
TRANSPORTATION ANALYSIS SIMULATION SYSTEM

(TRANSIMS)

VOLUME 1.0

Simulation Output Subsystem for IOC-1

B. W. Bush
Energy and Environment Analysis Group

Los Alamos National Laboratory

K. P. Berkbigler
Computer Research and Applications Group

Los Alamos National Laboratory

March 1998

[Tab 8]

TRANSIMS-1.0 – Simulation Output – March 1998 Page 2
LA-UR – 98-848

TRANSIMS-1.0 – Simulation Output – March 1998 Page 3
LA-UR – 98-848

Contents

1. INTRODUCTION... 5

2. DESIGN ... 7

2.1 CONCEPTS..7
2.1.1 Types of Data Collection ..7
2.1.2 Filtering ...7

2.2 CLASSES ..7
2.2.1 TOutDispatcher.. 10
2.2.2 TOutFactory ... 12
2.2.3 TOutGeneralSpecification .. 13
2.2.4 TOutGeneralSpecificationReader.. 14
2.2.5 TOutSpecificationReader.. 15
2.2.6 TOutProcessor.. 15
2.2.7 TOutEvolutionProcessor... 16
2.2.8 TOutEventProcessor... 17
2.2.9 TOutSummaryProcessor ... 18
2.2.10 TOutObserver... 19
2.2.11 TOutVehicleObserver... 19
2.2.12 TOutNodeEvolutionObserver.. 20
2.2.13 TOutLinkEvolutionObserver .. 20
2.2.14 TOutSignalCoordinatorEvolutionObserver ... 20
2.2.15 TOutSignalizedControlObserver... 20
2.2.16 TOutIntersectionObserver... 21
2.2.17 TOutLinkSpaceObserver .. 21
2.2.18 TOutLinkTimeObserver ... 22
2.2.19 TOutRetriever .. 22
2.2.20 TOutEvolutionRetriever ... 23
2.2.21 TOutEventRetriever.. 23
2.2.22 TOutSummaryRetriever.. 23
2.2.23 TOutWriter .. 24
2.2.24 TOutTextWriter ... 24
2.2.25 TOutStorage... 24
2.2.26 TOutRecord.. 26
2.2.27 TOutException ... 28

3. IMPLEMENTATION.. 29

3.1 C++ LIBRARIES .. 29
3.2 FILE SYSTEM.. 29
3.3 INTEGRATION INTO THE MICROSIMULATION ... 31

4. USAGE... 32

4.1 SPECIFICATION FORMATS ... 32
4.1.1 Output Specification... 32
4.1.2 Output Node Specification.. 34
4.1.3 Output Link Specification... 35

4.2 DATA RETRIEVAL... 35

TRANSIMS-1.0 – Simulation Output – March 1998 Page 4
LA-UR – 98-848

4.3 OUTPUT FORMATS ... 36
4.3.1 Snapshot Data .. 36
4.3.21. Event Data ... 37
4.3.3 Summary Data ... 38

4.4 EXAMPLE OF RETRIEVAL USING C++ ... 39
4.5 NOTES.. 41

4.5.1 Database Setup ... 41
4.5.2 Empty Storage Files ... 41

5. FUTURE WORK ... 42

6. REFERENCES .. 43

TRANSIMS-1.0 – Simulation Output – March 1998 Page 5
LA-UR – 98-848

1. INTRODUCTION

The output subsystem collects data from a running microsimulation, stores the data for future use,
and manages the subsequent retrieval of the data. It forms a layer separating the other subsystems
from the actual data files so that the other subsystems do not need to access the data files at the
physical level or deal with the physical location and organization of the files. Figure 1 shows the
position of the simulation output subsystem within the TRANSIMS software architecture. This
subsystem depends only on the database subsystem (strongly) and the network subsystem (weakly)
and is not tied to the specific design used for the IOC-1 microsimulation; this opens the possibility
to reuse it in other TRANSIMS traffic simulations.

Analyst
Toolbox

Database

Simplified
HCAD

Interim
Planner

Low Fidelity
Microsimulator

Input
Editor

Output
Visualizer

Populat'n
Synth.

Activity
Generator

Router
Goal

Measur.
Parallel
Toolbox

CA
Microsim.

GIS Statistics Animation Plotting

Establishment
Representation

Traveler
Representation

Activity
Representation

Plan
Representation

Vehicle
Representation

Network
Representation

Simulation
Output

Application

System

High-level subsystem

Low-level subsystem

Utility subsystem

Figure 1: Location of the Simulation Output Subsystem in the TRANSIMS Software
Architecture

This subsystem also allows the user to specify what data is collected and retrieved, and to filter it
by space and time. Users can configure the subsystem to collect a wide variety of trajectory, event,
and summary data from the simulation. Figure 2 shows an example of how data collection can be
configured. The data can be accessed in binary format via a direct connection to the subsystem or
in a delimited-text format for off-line postprocessing.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 6
LA-UR – 98-848

collect event
data here at
all times

collect trajectory
data here from
8 AM to 9 AM

collect summary
data here from
6 AM to 10 AM

Figure 2: Data Collection Filtered by Space and Time

The subsystem has been put to a wide variety of uses in the first TRANSIMS case study.
Snapshot data was used for animating vehicle movement, making periodic snapshots of the traffic,
understanding the traffic behavior induced by CA (cellular automaton) microsimulation rules,
refining the driving logic, and deriving fundamental diagrams. Event data has helped to locate
problems with network data, driver logic, and plans; and to record the entry and exit times of
vehicles in and out of the study area. Summary data provided a means to animate vehicle densities,
identify congestion and deadlocks, and replan trips using observed link travel times.

The collection occurs in a distributed manner such that the impact of the subsystem on the
microsimulation performance is minimized. Although the simulation output subsystem runs on
multiple computational nodes (CPNs) during data collection, it does not require communication
between the CPNs. This leaves the full communication bandwidth available for use by the
simulation proper. The retrieval, on the other hand, provides a unified view of the distributed data
by coordinating the retrieval of data from remote file systems. Figure 3 illustrates the dual uses of
the subsystem.

CA
Microsimulation

Output
Visualizer

data collection

data retrieval

Simulation
Output

Figure 3: Dual Uses of the Simulation Output Subsystem

The body of this document outlines the design, implementation, and usage of the subsystem.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 7
LA-UR – 98-848

2. DESIGN

2.1 Concepts

2.1.1 Types of Data Collection

The output subsystem currently can collect three types of data: snapshot (trajectory) data, event
data, and summary data. Any number of each of these may be collected simultaneously in a
simulation.

1) Snapshot data provides the most detailed information about how the state of the
microsimulation evolves in time. The vehicle data for links consists of the location, velocity,
and status of each vehicle; this provides a complete trajectory for each vehicle in the
simulation. The vehicle data for intersections consists of the location of the vehicle within the
intersection buffer. The traffic control data simply reports the current phase and allowed
movements at the traffic control. Snapshot data may be collected for each time step; the data
is not summarized (i.e., totaled or averaged) in any way.

2) Event data supplies information on exceptional conditions of vehicle status. Examples include
when a vehicle becomes lost (unable to follow its plan), when the plan for a vehicle is invalid,
and when the vehicle enters or exits the study area. Event data is collected only when an event
occurs.

3) Summary data reports aggregate data about the simulation. The link travel time data consists
of counts of vehicles exiting links and means and variances of the vehicle traversal times for
those links. Link density data provides counts and mean velocities of vehicles in variably sized
boxes that partition links. Summary data is sampled and reported periodically throughout the
simulation.

2.1.2 Filtering

The simulation output subsystem has the capability to collect data on any subset of nodes and links
in the road network (Figure 2). It is also possible to set the starting and ending times within which
data collection occurs (also Figure 2). A user can also specify the frequency of reporting for
snapshot and summary data and the sampling frequency (i.e., the frequency at which the data is
observed) for summary data. The space and time filtering can be different for each type of data.

2.2 Classes

The simulation output subsystem has classes containing domain knowledge and classes forming a
domain-independent data management layer (Figure 4). Figure 5, Figure 6, and Figure 7 show the
relationships between classes used for snapshot, event, and summary data collection, respectively.
Figure 8 shows the relationships between classes used for data retrieval.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 8
LA-UR – 98-848

Interface to Simulation

Metadata Specification

Generic Data Filtering

Storage Technology

Data Export

Interface to Toolbox

Domain Knowledge Layer

Data Management Layer

Figure 4: Categories of Classes

1

n

TOutDispatcher

TOutFactory TOutGeneralSpecification TOutGeneralSpecificationReader TOutSpecificationReader

TOutProcessor

TOutEvolutionProcessor TOutObserver

TOutVehicleObserver

TOutNodeEvolutionObserver

TOutLinkEvolutionObserver

TOutSignalCoordinatorEvolutionObserverTOutSignalizedControlObserver

TOutIntersectionObserver

1

1

1

1

1

1

1

1

1

1

1

1

TOutRecord

1

1

TOutStorage

1

1

1 3

1 n

1

1

Figure 5: Class Diagram for Classes Involved in Snapshot Data Collection (unified notation)

TRANSIMS-1.0 – Simulation Output – March 1998 Page 9
LA-UR – 98-848

TOutDispatcher

TOutFactory TOutGeneralSpecification TOutGeneralSpecificationReader TOutSpecificationReader

TOutProcessor

TOutObserver

TOutVehicleObserver

TOutRecord

TOutStorage

1

1

1

1

TOutEventProcessor 1 1

1

1

1

1

1 n

1

n

Figure 6: Class Diagram for Classes Involved in Event Data Collection (unified notation)

TOutDispatcher

TOutFactory TOutGeneralSpecification TOutGeneralSpecificationReader TOutSpecificationReader

TOutProcessor

TOutObserver

TOutRecord

TOutStorage

1

1

1

1

1 n

1

n

1

TOutSummaryProcessor

TOutLinkSpaceObserver TOutLinkTimeObserver

1

n

1 2

1

n

Figure 7: Class Diagram for Classes Involved in Summary Data Collection (unified notation)

TRANSIMS-1.0 – Simulation Output – March 1998 Page 10
LA-UR – 98-848

TOutRecord

TOutStorage

RWDBValue

RWFile

n

n

1

TOutGeneralSpecification

TOutGeneralSpecificationReader

TOutSpecificationReader

TOutRetriever

TOutWriter

TOutTextWriter

TOutEvolutionRetriever

TOutSummaryRetriever

1 1TOutEventRetriever

1

3

1

2

1

1

Figure 8: Class Diagram for Classes Involved in Data Retrieval (unified notation)

2.2.1 TOutDispatcher

An output dispatcher coordinates the construction of simulation output objects and supervises the
transfer of data. Each dispatcher has processors and observers; it also remembers the factory it
uses to construct objects.

enum EObserverType {kNodeEvolutionObserver,
kLinkEvolutionObserver, kVehicleObserver,
kIntersectionObserver,
kSignalCoordinatorEvolutionObserver,
kSignalizedControlObserver, kLinkSpaceObserver,
kLinkTimeObserver}

Observer types.

TOutDispatcher(TOutSpecificationReader& reader, TOutFactory&
factory)

Construct an output dispatcher.

bool operator==(const TOutDispatcher& dispatcher) const
bool operator!=(const TOutDispatcher& dispatcher) const

Return whether two output dispatchers are the same.

void RecordOutput(REAL time)
Begin output recording for this time step.

TRANSIMS- Simulation Output – March 1998 11

ProcessorMap& GetProcessors()

Return the processors.

const ObserverMap& GetObservers() const

EvolutionProcessorSet& GetEvolutionProcessors()

Return the evolution processors.

const EventProcessorSet& GetEventProcessors() const

SummaryProcessorSet& GetSummaryProcessors()

Return the summary processors.

Define the node observers.

Define the link observers.

Define the vehicle observers.

observers)

void SetSignalCoordinatorObservers(TOutObserver::ObserverMap&

Define the signal coordinator observers.

observers)

void SetLinkSpaceObservers(TOutObserver::ObserverMap& observers)

void SetLinkTimeObservers(TOutObserver::ObserverMap& observers)

void ClearLinkSpaceObservers(TOutObserver::ObserverMap&

Undefine the link space observers.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 12
LA-UR – 98-848

void ClearLinkTimeObservers(TOutObserver::ObserverMap&
observers)

Undefine the link time observers.

2.2.2 TOutFactory

An output factory allocates and constructs new simulation output objects.

TOutFactory()
Construct a factory.

virtual TOutEvolutionProcessor*
NewEvolutionProcessor(OutProcessorId id, const
TOutGeneralSpecification& specification)

Return a new evolution processor from the specification.

virtual TOutEventProcessor* NewEventProcessor(OutProcessorId id,
const TOutGeneralSpecification& specification)

Return a new event processor from the specification.

virtual TOutSummaryProcessor* NewSummaryProcessor(OutProcessorId
id, const TOutGeneralSpecification& specification)

Return a new summary processor from the specification.

virtual TOutLinkEvolutionObserver*
NewLinkEvolutionObserver(OutObserverId id)

Return a new link evolution observer.

virtual TOutVehicleObserver* NewVehicleObserver(OutObserverId
id)

Return a new vehicle observer.

virtual TOutNodeEvolutionObserver*
NewNodeEvolutionObserver(OutObserverId id)

Return a new node evolution observer.

virtual TOutIntersectionObserver*
NewIntersectionObserver(OutObserverId id)

Return a new intersection observer.

virtual TOutSignalCoordinatorEvolutionObserver*
NewSignalCoordinatorEvolutionObserver(OutObserverId
id)

Return a new signal coordinator evolution observer.

virtual TOutSignalizedControlObserver*
NewSignalizedControlObserver(OutObserverId id)

Return a new signalized control observer.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 13
LA-UR – 98-848

virtual TOutLinkSpaceObserver*
NewLinkSpaceObserver(OutObserverId id)

Return a new link space observer.

virtual TOutLinkTimeObserver* NewLinkTimeObserver(OutObserverId
id);

Return a new link time observer.

2.2.3 TOutGeneralSpecification

The general specification defines the frequency and extent of data to be collected or retrieved in
both space and time. Each specification has a root, a name, a minimum time, a maximum time, a
time step, a time sample, a box length, a collection region, a set of node ids, and a set of link ids.

static const REAL kMinusInfinity
static const REAL kPlusInfinity

Time constants.

TOutGeneralSpecification(TOutGeneralSpecificationReader& reader)
Construct a general specification from a reader.

const string& GetRoot() const
Return the root for the specification.

const string& GetName() const
Return the name for the specification.

bool CollectForTime(REAL time) const
Return whether data should be collected for the specified time.

bool SampleForTime(REAL time) const
Return whether data should be sampled at the specified time.

bool IsAtStartTime(REAL time) const
Return whether the specified time is the start time.

REAL GetBoxLength() const
Return the box length.

bool CollectForPoint(const TGeoPoint& point) const
Return whether data should be collected for the specified point in space.

bool CollectForNode(NetNodeId id) const
Return whether data should be collected for the specified node.

bool CollectForLink(NetLinkId id) const
Return whether data should be collected for the specified link.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 14
LA-UR – 98-848

2.2.4 TOutGeneralSpecificationReader

A general specification reader reads specifications from the database. Each general specification
reader has database table accessors for the specification and for node and link tables.

enum EProcessorType {kEvolutionProcessor, kEventProcessor,
kSummaryProcessor}

Processor types.

TOutGeneralSpecificationReader(TOutSpecificationReader& reader)
Construct a general specification reader.

void Reset()
Reset the iteration over the table.

void GetNextSpecification()
Get the next specification in the table.

bool MoreSpecifications() const
Return whether there are any more specifications in the table.

string GetRoot() const
Return the root of the specification.

string GetName() const
Return the name of the specification.

REAL GetMinimumTime() const
Return the minimum time of the specification.

REAL GetMaximumTime() const
Return the maximum time of the specification.

REAL GetTimeStep() const
Return the time step of the specification.

REAL GetTimeSample() const
Return the time sampling of the specification.

REAL GetBoxLength() const
Return the box length of the specification.

TGeoRectangle GetRegion() const
Return the geographic region of the specification.

NodeIdSet GetNodes() const
Return the nodes in the specification.

LinkIdSet GetLinks() const
Return the links in the specification.

TRANSIMS-1.0 – – March 1998 15
LA-UR – 98-848

Return the processor type in the specification. A TOutInvalidProcessor
is thrown if the processor is not a valid type.

2. .5 TOutSpecificationReader

specification table, a node specification table, and a link specification table.

TOutSpecificationReader(TDbTable generalTable, TDbTable

Construct a reader for the specified tables.

TDbTable& GetGeneralTable()

TDbTable& GetNodeTable()
Return the node specification table.

Return the link specification table.

2. .6 TOutProcessor

representation that is filtered and summarized before storage. A processor has an id and a general
output specification; the class keeps track of the next available processor id.

kSummaryProcessor}
Processor types.

specification)
Construct a processor.

Return the processor type.

virtual void RecordOutput(REAL time)

OutProcessorId GetId()
const OutProcessorId GetId() const

static OutProcessorId GetNextId()
Return the next unused processor id.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 16
LA-UR – 98-848

TOutGeneralSpecification& GetGeneralSpecification ()
const TOutGeneralSpecification& GetGeneralSpecification() const

Return the general specification.

2.2.7 TOutEvolutionProcessor

An output evolution processor deals with evolving data such as that needed for animation, space-
time plots, etc. An evolution processor has a node observer, a link observer, a vehicle observer, an
intersection observer, a signal coordinator observer, and a signalized control observer. It is
connected to corresponding storage objects.

TOutEvolutionProcessor(OutProcessorId, const
TOutGeneralSpecification& specification)

Construct an evolution processor.

EProcessorType GetProcessorType() const
Return the processor type.

TOutEvolutionSpecification& GetEvolutionSpecification()
const TOutEvolutionSpecification& GetEvolutionSpecification()

const
Return the evolution specification.

virtual void RecordOutput(REAL time)
Begin recording output for this time step.

virtual void RecordNode()
Finish recording output for a node.

virtual void RecordLink()
Finish recording output for a link.

virtual void RecordVehicle()
Finish recording output for a vehicle.

virtual void RecordIntersection()
Finish recording output for an intersection.

virtual void RecordSignalCoordinator()
Finish recording output for a signal coordinator.

virtual void RecordSignalizedControl()
Finish recording output for a signalized control.

TOutObserver& GetNodeObserver()
const TOutObserver& GetNodeObserver() const

Return the node observer.

void SetNodeObserver(TOutObserver& observer)
Define the node observer.

TRANSIMS-1.0 – – March 1998 17
LA-UR – 98-848

const TOutObserver& GetLinkObserver() const
Return the link observer.

Define the link observer.

TOutObserver& GetVehicleObserver()

Return the vehicle observer.

void SetVehicleObserver(TOutObserver& observer)

TOutObserver& GetIntersectionObserver()
const TOutObserver& GetIntersectionObserver() const

void SetIntersectionObserver(TOutObserver& observer)
Define the intersection observer.

const TOutObserver& GetSignalCoordinatorObserver() const
Return the signal coordinator observer.

Define the signal coordinator observer.

TOutObserver& GetSignalizedControlObserver()

Return the signalized control observer.

void SetSignalizedControlObserver(TOutObserver& observer)

2.2 TOutEventProcessor

An output event processor deals with conditions occurring in the simulation such as vehicle entry,

and is connected to a vehicle storage.

TOutEventProcessor(OutProcessorId id, const

vehicleMask)
Construct an event processor.

Return the processor type.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 18
LA-UR – 98-848

virtual void RecordOutput(REAL time)
Begin recording output for this time step.

virtual void RecordVehicle()
Finish recording output for a vehicle.

TOutObserver& GetVehicleObserver()
const TOutObserver& GetVehicleObserver() const

Return the vehicle observer.

void SetVehicleObserver(TOutObserver& observer)
Define the vehicle observer.

UINT GetVehicleMask() const
Return the vehicle status mask.

2.2.9 TOutSummaryProcessor

An output summary processor collects statistics on the simulation. A summary processor has
space and time observers and is connected to corresponding storages.

TOutSummaryProcessor(OutProcessorId id, const
TOutGeneralSpecification& specification)

Construct a summary processor.

EProcessorType GetProcessorType() const
Return the processor type.

virtual void RecordOutput(REAL time)
Begin recording output for this time step.

virtual void RecordSpace(const TOutObserver& observer)
Finish recording output for link space data.

virtual void RecordTime(const TOutObserver& observer)
Finish recording output for link time data.

ObserverSet& GetSpaceObservers()
const ObserverSet& GetSpaceObservers() const

Return the space observers.

ObserverSet& GetTimeObservers()
const ObserverSet& GetTimeObservers() const

Return the time observers.

void AddSpaceObserver(TOutObserver& observer)
Define a space observer.

void AddTimeObserver(TOutObserver& observer)
Define a time observer.

1.0 – Simulation Output – March 1998 Page
LA-UR – 98-848

void RemoveSpaceObserver(TOutObserver& observer)

void RemoveTimeObserver(TOutObserver& observer)
Undefine a time observer.

2.10

An observer converts data from the object to which it is attached into the generic form understood
by the output subsystem. An observer has an id and an output record. The class keeps track of the

TOutObserver(OutObserverId)
Construct an observer.

processor)
An observer has an observe function for noting the values of data members of interest in

the view.

OutObserverId GetId()

Return the observer’s id.

TOutRecord& GetRecord()

Return the associated record.

static OutObserverId GetNextId()

void SetTime(REAL time)
Define the record’s time.

2.11

A vehicle observer observes data related to vehicles.

TOutVehicleObserver(OutObserverId id)

void SetId(UINT vehicle)
Define the vehicle’s id.

Define the id of the link the vehicle is on.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 20
LA-UR – 98-848

void SetLane(NetLaneNumber lane)
Define the lane number the vehicle is on.

void SetDistance(REAL distance)
Define the vehicle’s distance from the node.

void SetNode(NetNodeId node)
Define the id of the node from which the distance is measured.

void SetVelocity(REAL velocity)
Define the vehicle’s velocity.

void SetStatus(BYTE status)
Define the vehicle’s status.

2.2.12 TOutNodeEvolutionObserver

A node evolution observer observes evolving data related to nodes.

TOutNodeEvolutionObserver(OutObserverId id)
Construct a node evolution observer.

2.2.13 TOutLinkEvolutionObserver

A link evolution observer observes evolving data related to links.

TOutLinkEvolutionObserver(OutObserverId id)
Construct a link evolution observer.

2.2.14 TOutSignalCoordinatorEvolutionObserver

A signal coordinator evolution observer observes evolving data related to signal coordinators.

TOutSignalCoordinatorEvolutionObserver(OutObserverId id)
Construct a signal coordinator evolution observer.

2.2.15 TOutSignalizedControlObserver

A signalized control observer observes data related to signals.

TOutSignalizedControlObserver(OutObserverId id)
Construct a signalized control observer.

void SetLink(NetLinkId link)
Define the id of the link entering the intersection.

void SetLane(NetLaneNumber lane)
Define the lane number of the lane entering the intersection.

1.0 – Simulation Output – March 1998 Page
LA-UR – 98-848

void SetNode(NetNodeId node)

void SetSignal(TNetTrafficControl::ETrafficControl state)
Define the current signal state.

2.16

An intersection observer observes data related to intersections.

TOutIntersectionObserver(OutObserverId id)

void SetId(UINT vehicle)
Define the vehicle’s id.

Define the id of the link from which the vehicle entered.

void SetLane(NetLaneNumber lane)

void SetNode(NetNodeId node)
Define the id of the node with which the intersection is associated.

Define the index of the vehicle’s position in the queue.

2. .17 TOutLinkSpaceObserver

box length, and box data.

TOutLinkSpaceObserver(OutObserverId id)

bool IsInitialized() const
Return whether the observer has been initialized.

Clear the accumulated spatial summary data for the observer.

void SetLink(NetLinkId id)

void SetNode(NetNodeId id)
Set the departure node id.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 22
LA-UR – 98-848

void SetLengths(REAL linkLength, REAL boxLength, REAL
cellLength)

Set the link, box, and cell lengths.

void AddVehicle(REAL distance, REAL velocity)
Add a vehicle to the summary.

void ReportObservations(TOutProcessor& processor)
Report the observations to the specified processor.

2.2.18 TOutLinkTimeObserver

A link time observer records vehicle travel times on a link. Each link time observer has a vehicle
count, a total of travel times, and a total of squared travel times.

TOutLinkTimeObserver(OutObserverId id)
Construct a link time observer.

void AddVehicle(REAL time)
Add a vehicle to the summary.

void ClearData()
Clear the data for the observer.

void SetLink(NetLinkId id)
Set the link id.

void SetNode(NetNodeId id)
Set the departure node id.

void ReportObservations(TOutProcessor& processor)
Report the observations to the specified processor.

2.2.19 TOutRetriever

An output retriever acts as an interface to coordinate the retrieval of data stored in a simulation.
Each retriever has a general specification and may refer to a network.

virtual void Retrieve()
Perform the retrieval.

TOutRetriever(const TOutGeneralSpecification& specification,
const TNetNetwork* network = NULL)

Construct a retriever based on the given specification and network.

TOutGeneralSpecification& GetGeneralSpecification()
const TOutGeneralSpecification& GetGeneralSpecification() const

Return the general specification.

TRANSIMS-1.0 – – March 1998 23
LA-UR – 98-848

Return the network, if any.

void BasicRetrieve(TOutStorage& storage, TOutWriter& writer,

Retrieve data from the specified storage and put it in the specified writer, sorting it if
indicated, and performing time and space filtering if indicated.

2.20

An evolution retriever gets specific trajectory data from storage and coordinates its conversion and
filtering. The retriever is connected to a vehicle storage, an intersection storage, and a signal

TOutEvolutionRetriever(const TOutStorage::HostSet& hosts, const
TOutGeneralSpecification& specification, const

Construct a reader for the specified hosts, given specification, and network.

void Retrieve(TOutWriter& vehicleWriter, TOutWriter&

sort = TRUE)
Perform the retrieval on the specified writers.

2.21

An event retriever gets specific event data from storage and coordinates its conversion and filtering.
The retriever is connected to a vehicle storage.

TOutGeneralSpecification& specification, const
TNetNetwork* network = NULL)

void Retrieve(TOutWriter& vehicleWriter, bool sort = TRUE)
Perform the retrieval on the specified writers.

2.22

An event retriever gets specific summary data from storage and coordinates its conversion and
filtering. The retriever is connected to a space storage and a time storage.

TOutGeneralSpecification& specification, const
TNetNetwork* network = NULL)

void Retrieve(TOutWriter& spaceWriter, TOutWriter& timeWriter,
bool sort = TRUE)

TRANSIMS-1.0 – Simulation Output – March 1998 Page 24
LA-UR – 98-848

2.2.23 TOutWriter

An output writer provides an interface for the external writing of data from simulation output. The
exception TOutWriterFailure is thrown if an operation fails.

TOutWriter()
Construct a writer.

virtual void Write(const TOutRecord& record)
virtual void Write(const TOutRecord& record, const

FieldCollection& fields)
Write the specified record.

2.2.24 TOutTextWriter

A text writer puts simulation output data into a formatted text file. The exception
TOutWriterFailure is thrown if an operation fails. Each text writer is connected to a file
and has a delimiter. A text writer may have to include header information in its output.

TOutTextWriter(const string& file, const string& delimiter =
"\t", bool includeHeader = FALSE)

Open the specified file for writing, including the record header.

void Write(const TOutRecord& record)
void Write(const TOutRecord& record, const FieldCollection&

fields)
Write the specified record with fields in the given order.

2.2.25 TOutStorage

An output storage manages the distributed file system and isolates the rest of the simulation output
objects from the details of the physical storage. Member functions throw the exception
TOutStorageFailure when errors occur. The class has a local host name. Each instance
has a file suffix, a root location, a basic name, and a file on each host.

static const long kBegin
static const long kEnd

Constants for seek positions.

enum Mode {kRead, kWrite, kDelete}
Storage modes: Use read mode for opening existing files, write mode for creating a new
file, and delete mode for deleting existing files.

TOutStorage(const string& root, const string& name, Mode mode =
kRead)

TOutStorage(const HostSet& hosts, const string& root, const
string& name, Mode mode = kRead)

Connect the storage with the given root and basic name to the specified hosts.

TRANSIMS- Simulation Output Page 25

const string& GetRoot() const
Return the root name.

Return the basic name.

HostSet GetHosts() const

HostHandle GetHostHandle(const string& host) const
Return the host handle.

long GetOffset(HostHandle host) const
long GetOffset(const string& host) const

bool AtEnd() const
bool AtEnd(HostHandle host) const

Return whether an end-of-file has occurred for the specified host file.

void Seek(long position = kBegin)

void Seek(const string& host, long position = kBegin)
Position the specified host file to the given location.

void Write(HostHandle host, const TOutRecord& record)
void Write(const string& host, const TOutRecord& record)

bool Read(TOutRecord& record)
bool Read(const string& host, TOutRecord& record)

Read the given record on the specified host. Return whether a record was available for
reading.

void WriteHeader(const string& host, const TOutRecord& record)
void WriteHeader(HostHandle host, const TOutRecord& record)

bool ReadHeader(TOutRecord& record)
bool ReadHeader(const string& host, TOutRecord& record)

Read the given record header on the specified host. Return whether a record was available
for reading.

Flush any pending operations.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 26
LA-UR – 98-848

2.2.26 TOutRecord

This class is used for storing the values of a collection of fields. Each record has a field map
holding the current values of the fields.

enum Type {kNoType, kChar, kUnsignedChar, kShort,
kUnsignedShort, kInt, kUnsignedInt, kLong,
kUnsignedLong, kFloat, kDouble, kString}

Field types.

TOutRecord()
Construct a record.

TOutRecord(const TOutRecord& record)
Make a copy of the given record.

TOutRecord& operator=(const TOutRecord& record)
Make the record a copy of the given record.

void SetField(const string& field, char value)
void SetField(const string& field, unsigned char value)
void SetField(const string& field, short value)
void SetField(const string& field, unsigned short value)
void SetField(const string& field, int value)
void SetField(const string& field, unsigned int value)
void SetField(const string& field, long value)
void SetField(const string& field, unsigned long value)
void SetField(const string& field, float value)
void SetField(const string& field, double value)
void SetField(const string& field, const string& value)
void SetField(const string& field)

Set the value of the specified field.

void GetField(const string& field, char& value) const
void GetField(const string& field, unsigned char& value) const
void GetField(const string& field, short& value) const
void GetField(const string& field, unsigned short& value) const
void GetField(const string& field, int& value) const
void GetField(const string& field, unsigned int& value) const
void GetField(const string& field, long& value) const
void GetField(const string& field, unsigned long& value) const
void GetField(const string& field, float& value) const
void GetField(const string& field, double& value) const
void GetField(const string& field, string& value) const

Get the value of the specified field.

Type GetType(const string& field) const
Return the type of the specified field.

FieldMap& GetMap()
const FieldMap& GetMap() const

Return the map for the record.

1.0 – Simulation Output – March 1998 Page
LA-UR – 98-848

FieldMapIterator GetIterator() const

1.0 – Simulation Output – March 1998 Page
LA-UR – 98-848

2. .27 TOutException

has a message. Figure shows the hierarchy of exception classes.

TOutException

TOutStorageFailure TOutWriterFailure TOutInvalidProcessor

Figure 9: Exception Hierarchy (unified notation)

TOutException(const string& message = "Simulation output
error.")

Construct an exception with the specified message text.

TOutException(const TOutException& exception)
Construct a copy of the specified exception.

TOutException& operator=(const TOutException& exception)
Make the exception a copy of the specified exception.

const string& GetMessage() const
Return the message text for the exception.

class TOutStorageFailure
This exception is thrown when a storage operation fails.

class TOutWriterFailure
This exception is thrown when a writer operation fails.

class TOutInvalidProcessor
This exception is thrown when the processor type is invalid.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 29
LA-UR – 98-848

3. IMPLEMENTATION

3.1 C++ Libraries

The Booch Components [RW 94] provide C++ container classes that the simulation output
subsystem uses extensively. The DBtools.h++ [SL 95; Su 95] and Tools.h++ [Ke 94] libraries
provide platform-independent data type and file system support, respectively. The subsystem also
uses the standard C++ library [Pl 95], the standard C library [Pl 92], and the POSIX library [Ga
95]. All of these libraries compile on a wide variety of platforms (UNIX and otherwise).

3.2 File System

Although the simulation output subsystem runs on multiple computational nodes (CPNs), it stores
output data locally (Figure 10) and thus does not require any communication between the CPNs.
A unified view of the data is provided during data retrieval by accessing and collating the data on
multiple remote disks (Figure 11).

CPU

CPU

CPU

Disk #1
(local)

Disk #3
(local)

Disk #2
(local)

CA
Microsimulation

(CPN #1)

CA
Microsimulation

(CPN #2)

CA
Microsimulation

(CPN #3)

data
Simulation

Output
(CPN #1)

data

data

Simulation
Output

(CPN #2)

Simulation
Output

(CPN #3)

Figure 10: Configuration for Simultaneous Data Collection on Multiple CPNs

TRANSIMS-1.0 – Simulation Output – March 1998 Page 30
LA-UR – 98-848

Disk #1
(remote)

Disk #2
(remote)

Disk #3
(remote)

Animationdata

Statisticsdata

GISdata

Plottingdata

O
u

tp
u

t V
isu

alizer

Simulation
Output

Figure 11: Configuration for Data Retrieval from Multiple Disks

The local-storage/remote-retrieval paradigm requires coordination between the microsimulation
software and the postprocessing software. The simplest way to accomplish this is to have each
CPN store data locally into a directory named local on each CPN. This will, of course, be a
different physical disk for each CPN. Each of these local directories is given a different NFS name
(typically the name of the CPN) so that it can be accessed remotely. Figure 12 illustrates this
scheme. Several other workable arrangements are possible, however.

Disk #1

CPN #1

/transims/data/local

remote workstation
used for retrieval

/transims/data/cpn1

Disk #2

local names remote (NFS-
mounted) names

Figure 12: Typical Naming and NFS-Mounting Scheme for Simulation Output Directories

TRANSIMS-1.0 – Simulation Output – March 1998 Page 31
LA-UR – 98-848

3.3 Integration into the Microsimulation

The simulation output subsystem must be integrated into the microsimulation by subclassing the
appropriate processor (TOut…Processor) and observer (TOut…Observer) classes and by
providing a subclass of TOutFactory for creating instances of these subclasses. This
mechanism allows a flexible, yet tight, coupling between the two subsystems without requiring the
simulation output subsystem to be tailored to the specifics of the microsimulation. Figure 13
illustrates an example of how this subclassing can be implemented.

TOutObserverTOutProcessor

TOutEvolution ProcessorTOutDispatcher

TCAEvolution Processor

TOutFactory

TCAOutFactory TSimulationSlave

TOutLink EvolutionObserver

TCALinkEvolutionObserver TTransimsEdge

1 n

1

n

1

1

n1

Figure 13: Subclassing Simulation Output Classes in a Simulation (unified notation)

TRANSIMS-1.0 – Simulation Output – March 1998 Page 32
LA-UR – 98-848

4. USAGE

4.1 Specification Formats

This section describes the files that a user must currently prepare in order to use the simulation
output subsystem in conjunction with the CA microsimulation.

The general specification output tables describe the general characteristics of the output that is to
be collected during a microsimulation run. These specifications are stored in the Oracle database
management system prior to running the microsimulation, retrieved by the microsimulation during
execution, and used to guide the simulation output subsystem’s collection and storage of data.

Tables may be created in Oracle by using the database functions of the Input Editor. Tables may
also be created by using the database subsystem import utility, for which the usage is:

Import file

where file contains information and commands for the construction of one or more data tables.
Import prints a brief help message if invoked without a file. When constructing new tables, it is
recommended that, when possible, an existing table description file that is similar to the desired
new table description be copied and edited. This reduces the chances for errors in the SQL
statements in the file.

Three tables are currently used to provide the general specification for the simulation output
subsystem. Preparation of the files for each of these tables is described below.

4.1.1 Output Specification

The output specification table provides information about the time frame for collecting data and
where the data should be stored. Table 1 defines the format for this table. The combination of
ROOT and NAME must be unique among multiple simultaneous users of the subsystem, or else the
output files will be overwritten. For example, evolutionary output might be collected on each CPN
for vehicle, intersection, and signal data. The files created would be:

ROOT + “/local” + NAME + “.veh” + “.stg” for vehicle data
ROOT + “/local” + NAME + “.int” + “.stg” for intersection data
ROOT + “/local” + NAME + “.sig” + “.stg” for signal data

Typically, the directory ROOT + “/local” + NAME on each host is just an NFS link to the
physical directory ROOT + hostname + NAME; this allows both local and global views of the
output directories (see Figure 12). Note that the output files must be deleted manually when they
are no longer needed.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 33
LA-UR – 98-848

Table 1: Format for the Output Specification Data Table (an “Output Specification” data
source in the database subsystem)

Field Interpretation
ROOT The directory where the output should be written
NAME The output file name
PROCESSOR The type of processor:

 “Evolution”: an evolution processor
 “Event”: an event processor
 “Summary”: a summary processor

TIMEMIN The first time (in seconds from simulation start) at which to collect data
TIMEMAX The last time (in seconds from simulation start) at which to collect data.
TIMESTP The frequency (in seconds) at which to report data (i.e., write it to disk)
TIMESMP The frequency (in seconds) at which to accumulate sample data
BOXLEN The length of the boxes used for summary data
ABSCISSAMN The minimum abscissa for which to collect data (currently ignored)
ABSCISSAMX The maximum abscissa for which to collect data (currently ignored)
ORDINATEMN The minimum ordinate for which to collect data (currently ignored)
ORDINATEMX The maximum ordinate for which to collect data (currently ignored)

An example output specification file is reproduced here:

Benchmark 1 (1 sq. mi.) Output Spec. II 1
This is a sample output specification table. 2
OUTSPECBENCH11II 3
Output Specification 4
CREATE TABLE OUTSPECBENCH11II (5
 PROCESSOR VARCHAR(25), 6
 ROOT VARCHAR(50), 7
 NAME VARCHAR(50), 8
 TIMEMIN NUMBER(10), 9
 TIMEMAX NUMBER(10), 10
 TIMESTP NUMBER(10), 11
 TIMESMP NUMBER(10), 12
 BOXLEN NUMBER(10), 13
 ABSCISSAMIN FLOAT, 14
 ABSCISSAMAX FLOAT, 15
 ORDINATEMIN FLOAT, 16
 ORDINATEMAX FLOAT, 17
 PRIMARY KEY (NAME) 18
); 19
PROCESSOR, ROOT, NAME, TIMEMIN, TIMEMAX, TIMESTP, TIMESMP, BOXLEN,
ABSCISSAMIN, ABSCISSAMAX, ORDINATEMIN, ORDINATEMAX 20
'Evolution', '/transims/output4', 'bn1_evolution_1', 0, 36000,
300, 0, 0, 0, 3000, 0, 3000 21
'Summary', '/transims/output4', 'bn1_summary_1', 0, 36000, 180,
10, 150, 0, 3000, 0, 3000 22
'Summary', '/transims/output4', 'bn1_summary_2', 0, 36000, 300,
60, 50, 0, 3000, 0, 3000 23
'Event', '/transims/output4', 'bn1_event_1', 0, 36000, 1, 1, 1, 0,
3000, 0, 3000 24

TRANSIMS-1.0 – Simulation Output – March 1998 Page 34
LA-UR – 98-848

The first line of the file is the unique table name, with no more than 50 characters. The second line
is a comment describing the table. Line 3 is a unique SQL table name. Line 4 is the data source
name. Line 5 begins the SQL command for creating the table with the name specified in line 3.
This command continues for fourteen additional lines and is terminated with a closing parenthesis
and a semicolon. Line 20 names the columns whose values are specified in the same order and
delimited by commas on lines 21 through 24. One type of evolution data, two types of summary
data, and one type of event data are specified for collection in this example.

4.1.2 Output Node Specification

The output node specification table is used to specify the nodes at which data should be collected.
Table 2 defines the format for this table. Until geographic filtering is supported this is the only
way to indicate the nodes for which data collection occurs.

Table 2: Format for the Output Node Specification Data Table (an “Output Node
Specification” data source in the database subsystem)

Field Interpretation
NAME The output file name
NODE The node id

An example output node specification file is reproduced here:

Benchmark 1 (1 sq. mi.) Output Node Spec. II 1
This is a sample output node specification table. 2
OUTNODEBENCH11II 3
Output Node Specification 4
CREATE TABLE OUTNODEBENCH11II (5
 NAME VARCHAR(50), 6
 NODE NUMBER(10), 7
 PRIMARY KEY (NAME,NODE) 8
); 9
NAME, NODE 10
'bn1_evolution_1',40006 11
'bn1_evolution_1',1793 12
'bn1_evolution_1',1808 13
'bn1_evolution_1',2413 14
'bn1_evolution_1',2423 15
'bn1_summary_2',2423 16
'bn1_summary_2',2424 17

The first line of the file is the unique table name, with no more than 50 characters. The second line
is a comment describing the table. Line 3 is a unique SQL table name. Line 4 is the data source
name. Line 5 begins the SQL command for creating the table with the name specified in line 3.
This command continues for four additional lines. Line 10 names the columns whose values are
specified on lines 11 and following. The NAME column refers to the output filename and must
correspond to the filename given in the Output Specification. Evolution data is collected on five
nodes and summary data on two nodes.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 35
LA-UR – 98-848

4.1.3 Output Link Specification

The output link specification table is used to specify the links at which data should be collected.
Table 3 defines the format for this table. Until geographic filtering is supported this is the only
way to indicate the links for which data collection occurs.

Table 3: Format for the Output Link Specification Data Table (an “Output Link
Specification” data source in the database subsystem)

Field Interpretation
NAME The output file name
LINK The link id

An example output link specification file is reproduced here:

Benchmark 1 (1 sq. mi.) Output Link Spec. II 1
This is a sample output link specification table. 2
OUTLINKBENCH11II 3
Output Link Specification 4
CREATE TABLE OUTLINKBENCH11II (5
 NAME VARCHAR(50), 6
 LINK NUMBER(10), 7
 PRIMARY KEY (NAME,LINK) 8
); 9
NAME, LINK 10
'bn1_summary_1',11150000 11
'bn1_summary_1',11140001 12
'bn1_summary_1',8830507 13

The first line of the file is the unique table name, with no more than 50 characters. The second line
is a comment describing the table. Line 3 is a unique SQL table name. Line 4 is the data source
name. Line 5 begins the SQL command for creating the table with the name specified in line 3.
This command continues for four additional lines. Line 10 names the variables whose values are
specified on lines 11 and following. Summary data is collected on three links.

4.2 Data Retrieval

The binary output stored in a distributed manner by the microsimulation is generally postprocessed
to collect it into a single location. The DumpStorage utility may be used to postprocess the output
into a text format for display or analysis. The usage is:

DumpStorage outname root name hosts …

where outname is the destination file name, root is the root directory for the host
subdirectories, name is the name of the storage file, and hosts … are the host subdirectory
names. For example,

DumpStorage bn1_summary_1.txt /transims/output4 bn1_summary_1.tim
bach faure sousa

collates the data from the files

TRANSIMS-1.0 – Simulation Output – March 1998 Page 36
LA-UR – 98-848

/transims/output4/bach/bn1_summary_1.tim.stg
/transims/output4/faure/bn1_summary_1.tim.stg
/transims/output4/sousa/bn1_summary_1.tim.stg

into the file

./bn1_summary_1.txt

in a tab-delimited ASCII text format.

4.3 Output Formats

4.3.1 Snapshot Data

Vehicle snapshot data files have the storage file suffix .veh.stg. Table 4 lists the fields
present in such files; each record in the file represents a single vehicle. The data reporting start
time, finish time, and reporting frequency are given by the output specification. The output
specification also determines on which links the data is collected.

Table 4: Data Format for Vehicle Snapshot Storage (.veh.stg) files

Field Interpretation
VEHICLE The vehicle id
NODE The node from which the vehicle was traveling away
LINK The link on which the vehicle was traveling
LANE The lane on which the vehicle was traveling
TIME The time the data was taken (in seconds from simulation start)
DISTANCE The distance (in meters) the vehicle was away from the node setback
VELOCITY The velocity (in meters per second) the vehicle was traveling
STATUS The vehicle status bits:

1: The vehicle is lost.
2: The vehicle is at a dead end.
4: The vehicle has just entered the study area.
8: The vehicle has just exited the study area.
16: The vehicle is in the study area.
32: The vehicle has an invalid plan.

Intersection evolution data files have the storage file suffix .int.stg. Table 5 lists the fields
present in such files; each record in the file represents a single vehicle. The data reporting start
time, finish time, and reporting frequency are given by the output specification. The output
specification also determines on which nodes the data is collected.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 37
LA-UR – 98-848

Table 5: Data Format for Intersection Evolution Storage (.int.stg) files

Field Interpretation
VEHICLE The vehicle id
NODE The node where the vehicle is located
TIME The time the data was taken (in seconds from simulation start)
LINK The link from which the vehicle entered
LANE The lane from which the vehicle entered
QINDEX The vehicle position in the queue

Signal evolution data files have the storage files suffix .sig.stg. Table 6 lists the fields present
in such files; each record in the file represents an incoming lane at an intersection. The data
reporting start time, finish time, and reporting frequency are given by the output specification. The
output specification also determines on which nodes the data is collected.

Table 6: Data Format for Signal Evolution Storage (.sig.stg) files

Field Interpretation
NODE The node where the signal is located
TIME The time the data was taken (in seconds from simulation start)
LINK The link entering the signal
LANE The lane entering the signal
SIGNAL The type of control present:

0: None.
1: Stop.
2: Yield.
3: Wait.
4: Caution.
5: Permitted.
6: Protected.

4.3.2 Event Data
Vehicle event data files have the storage file suffix .veh.stg. Table 7 lists the fields present in
such files; each record in the file represents a single vehicle event. The data reporting start time,
finish time, and reporting frequency are given by the output specification. This data is collected
for all links—i.e., the output link specification is ignored.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 38
LA-UR – 98-848

Table 7. Data format for vehicle event storage (.veh.stg) files

Field Interpretation
VEHICLE The vehicle id
NODE The node from which the vehicle was traveling away
LINK The link on which the vehicle was traveling
LANE The lane on which the vehicle was traveling
TIME The time the data was taken (in seconds from simulation start)
DISTANCE The distance (in meters) the vehicle was away from the node setback
VELOCITY The velocity (in meters per second) the vehicle was traveling
STATUS The vehicle status bits:

1: The vehicle is lost.
2: The vehicle is at a dead end.
4: The vehicle has just entered the study area.
8: The vehicle has just exited the study area.
16: The vehicle is in the study area.
32: The vehicle has an invalid plan.

4.3.3 Summary Data

Link space summary data files have the storage file suffix .spa.stg. Table 8 lists the fields
present in such files; each record in the file represents the summary for a single box on a link. If
there is a short box, it is at the beginning of the link. The beginning distance of the box, which is
not written in the file, is the ending distance of the box minus the box size. The data reporting start
time, finish time, the sampling frequency, the data reporting frequency, and the box size are given
by the output specification. The output specification also determines on which links the data is
collected. Note that no data is reported at the reporting start time. Also, there may be two entries
for links that are split by a CPN boundary. When this happens, it is necessary to add the
respective COUNT and SUM entries for the duplicate box records.

Table 8: Data Format for Link Space Summary Storage (.spa.stg) files

Field Interpretation
LINK The link being reported
NODE The node from which vehicles were traveling
DISTANCE The ending distance of the box (in meters) from the node setback
TIME The time the data was taken (in seconds from simulation start)
COUNT The number of vehicles in the box
SUM The sum of the vehicle velocities (in meters per second) in the box

Link time summary data files have the storage file suffix .tim.stg. Table 9 lists the fields
present in such files. Each record in the file represents the summary for a single direction of a link.
The data reporting start time, finish time, and reporting frequency are given by the output
specification. The output specification also determines on which links the data is collected. Note
that no data is reported at the reporting start time. Also, there may be two entries for links that are
split by a CPN boundary. When this happens, it is necessary to add the respective COUNT, SUM,
and SUMSQUARES entries for the duplicate link records.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 39
LA-UR – 98-848

Table 9: Data Format for Link Time Summary Storage (.tim.stg) files

Field Interpretation
LINK The link being reported
NODE The node from which vehicles were traveling
TIME The time the data was taken (in seconds from simulation start)
COUNT The number of vehicles leaving the link
SUM The sum of the vehicle travel times (in seconds) for vehicles leaving the link.

The time spent in the previous intersection is included in this value
SUMSQUARES The sum of the squared vehicle travel times (in seconds squared) for vehicles

leaving the link. The time spent in the previous intersection is included in this
value.

4.4 Example of Retrieval Using C++

The following example shows how to access and retrieve evolution data using C++ calls to the
simulation output subsystem.

// Create a character buffer for lines from standard input.
char line[1000];

// Get the file name for the vehicle text output file.
cin.getline(line, 1000);
TOutWriter* vehicleWriter = new TOutTextWriter(line, "\t", TRUE);

// Get the file name for the output text files.
cin.getline(line, 1000);
TOutWriter* intersectionWriter = new TOutTextWriter(line, "\t",
 TRUE);
cin.getline(line, 1000);
TOutWriter* signalWriter = new TOutTextWriter(line, "\t", TRUE);
TDbDirectory directory(TDbDirectoryDescription("IOC-1"));

// Open the data sources.
TDbSource generalSource(directory,
 directory.GetSource("Output Specification"));
TDbSource nodeSource(directory,
 directory.GetSource("Output Node Specification"));
TDbSource linkSource(directory,
 directory.GetSource("Output Link Specification"));

// Get the data table names and open the data tables.
cin.getline(line, 1000);
TDbTable generalTable(generalSource,
 generalSource.GetTable(line));
cin.getline(line, 1000);
TDbTable nodeTable(nodeSource, nodeSource.GetTable(line));
cin.getline(line, 1000);
TDbTable linkTable(linkSource, linkSource.GetTable(line));

// Create the specification.
TOutGeneralSpecificationReader
 reader(TOutSpecificationReader(generalTable,

TRANSIMS-1.0 – Simulation Output – March 1998 Page 40
LA-UR – 98-848

 nodeTable, linkTable));
reader.Reset();

// Get the set of hosts.
TOutStorage::HostSet hosts(HashValue);
for (cin.getline(line, 1000); !cin.eof(); cin.getline(line, 1000))
 hosts.Add(line);

// Create the retriever.
TOutEvolutionRetriever retriever(hosts,
 TOutGeneralSpecification(reader));

// Retrieve the data.
retriever.Retrieve(*vehicleWriter, *intersectionWriter,
 *signalWriter, hosts.Extent() > 1);

// Destroy the writers.
delete vehicleWriter;
delete intersectionWriter;
delete signalWriter;

TRANSIMS-1.0 – Simulation Output – March 1998 Page 41
LA-UR – 98-848

4.5 Notes

4.5.1 Database Setup

The CreateSources utility must be executed before the first use of the simulation output subsystem.
This application registers the data sources in the database subsystem.

4.5.2 Empty Storage Files

The present implementation of the TOut…Retriever classes cannot handle input files of zero
length. If no data is collected on a CPN, it is advisable to delete the empty storage file(s) created
for that CPN.

TRANSIMS-1.0 – Simulation Output – March 1998 Page 42
LA-UR – 98-848

5. FUTURE WORK

Future work planned for the TRANSIMS simulation output subsystem will focus on several areas:

• collecting new types of data such as turn counts, fundamental diagrams, and velocity-
acceleration histograms

• enhancing the performance of the subsystem by supporting data compression, indexing,
sorting, and filtering

• improving the DumpStorage utility to provide more flexibility in exporting data

• eliminating the dependence on commercial products such as DBtools.h++ and Tools.h++

TRANSIMS-1.0 – Simulation Output – March 1998 Page 43
LA-UR – 98-848

6. REFERENCES

[Ga 95] B. O. Gallmeister, POSIX.4: Programming for the Real World, (Sebastopol,
California: O’Reilly & Associates, 1995).

[Ke 94] T. Keffer, Tools.h++ Introduction and Reference Manual, Version 6, (Corvallis,
Oregon: Rogue Wave Software, 1994).

[Pl 92] P. J. Plauger, The Standard C Library, (Englewood Cliffs, New Jersey: Prentice Hall,
1992).

[Pl 95] P. J. Plauger, The Draft Standard C++ Library, (Englewood Cliffs, New Jersey:
Prentice Hall, 1995).

[RW 94] Rogue Wave Software, The C++ Booch Components, Version 2.3, (Corvallis,
Oregon: Rogue Wave Software, 1994).

[SL 95] S. Sulsky and K. L. Lohn, DBtools.h++ User’s Guide and Tutorial, Version 1,
(Corvallis, Oregon: Rogue Wave Software, 1995).

[Su 95] S. Sulsky, DBtools.h++ Class Reference, Version 1, (Corvallis, Oregon: Rogue Wave
Software, 1995).

